WERKSTOFFLISTE

NICHT VOLLSTÄNDIG

ALUMINIUM-LEGIERUNGEN

			Mechanische Eigenschaften						Allgemeine Eigenschaften											
Bezeichnung nach EN 573		Dichte (g/cm³)		nische Ei (Mindest		aften		Korrosions- resistenz		Aı	nodisierbarke	eit	Schwe	issbarkeit	Zerspanbarkeit					
			Zustand	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	Härte (HB)	Luft	Meer	Schutz	Hart	Glanz	Lichtbogen (TIG + MIG)	Löten	Elektro- nenstrahl	Spanbildung	Oberflä- chenglanz			
EN AW 2014	Al Cu 4 Si Mg	2,80	T6	380	440	7	120	С	D	С	В	С	D	В	В	В	С			
EN AW 2017	Al Cu 4 Mg Si	2,79	T6	315	420	10	105	С	D	С	В	С	D	В	В	В	В			
EN AW 2024	Al Cu 4 Mg 1	2,77	T6	345	425	6	120	С	D	С	В	С	D	В	В	В	В			
EN AW 6061	Al Mg 1 Si Cu	2,70	T6	240	260	8	85	Α	В	А	A	С	В	В	Α	С	Α			
EN AW 6082	Al Si 1 Mg Mn	2,71	T6	300	340	10	95	Α	В	А	A	С	В	В	Α	С	Α			
EN AW 7075	Al Zn 5,5 Mg Cu	2,80	T73	375	440	8	120	С	D	В	A	С	D	С	В	В	В			

TITAN-LEGIERUNGEN

				Machaniacha Firenzaha (kan					Allgemeine Eigenschaften											
ASTM-Bezeichnung		Dichte (g/cm³)	Mechanische Eigenschaften (Mindestwerte)						rosions- sistenz	Oberflächenbehandelbarkeit			Schweissbarkeit			7ovononhovkoje				
			(8)	Zustand	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	Härte (HB)	Luft	Meer	Schutz	Farbe	Biokom- patibilität	Lichtbogen (TIG + MIG)	Löten	Elektro- nenstrahl	Zerspanbarkeit			
T	TA6V	Ti 6 Al 4 V	4,43	Geglüht	830	900	10	265	Α	В*	А	Α	Α	В	-	В	С			

^{*} Spannungsrisskorrosionsrisiko bei tiefen Einschnitten.

A => Sehr gut

 $B \Rightarrow Gut$

C => Mittelmässig

D => Schlecht, zu vermeiden

KUPFER-LEGIERUNGEN

			Macha	niecha Fi	igenech	often						Allge	emeine Eigenschafte	en			
Bezeichnung nach EN 12163	Dichte (g/cm³)		Mechanische Eigenschaften (Mindestwerte)						Oberflächenbehandelbarkeit			Schweissbarkeit					
		(8,0)	Zustand	Rp0.2 (MPa)	Rm (MPa)	A5 (%)			Meer	Polieren	Elektrolyse	Galvani- sierung	Lichtbogen (TIG + MIG)	Löten	Schweiss- brenner	Zerspanbarkeit	
EN CW 004A	Cu ETP	8,90	Halbhart	250	300	12	90	Α	В	В	Α	А	D	Α	D	D	
EN CW 009A	CU OFE	8,94	Halbhart	250	300	12	90	Α	В	В	Α	А	Α	Α	В	D	
EN CW 508 L	Cu Zn 37	8,43	Roh	280	380	28	110	В	С	А	С	А	С	Α	С	D	
EN CW 616 N	Cu Zn 40 Pb 1 Al	8,40	Roh	360	460	18	135	В	С	В	D	А	D	Α	D	А	
EN CW 713 R	Cu Zn 37 Mn 3 Al 2 Pb Si	8,20	Roh	320	580	12	150	В	В	В	D	С	В	D	С	В	
EN CW 401 J	Cu Ni 7 Zn 27 Pb 3 Mn 2	8,50	Hart gezogen + angelassen	650	750	6	200	Α	Α	A	Α	А	С	Α	С	D	
EN CW 111 C	Cu Ni 2 Si	8,90	Hart gezogen + angelassen	640	700	6	195	Α	A	В	В	В	A	В	С	D	
EN CW 307 G	Cu Al 10 Ni 5 Fe 4	7,60	Roh	450	650	15	190	Α	Α	Α	Α	Α	В	С	В	D	

MAGNESIUM-LEGIERUNGEN

		Dichte		nische Ei (Mindest		aften			rrosions-	Oberflä	chenbehande		meine Eigenschafte Schweis	en sbarkeit *	*2			
ASTI	ASTM-Bezeichnung		Zustand	Rp0.2 (MPa)	Rm (MPa)	A5 (%)	Härte (HB)	res Luft	istenz*1 Meer	Abtragen + Harz + Lack	Abtragen + Lack	Anodisie- rung + Lack	Lichtbogen (TIG + MIG)	Löten	Elektro- nenstrahl	Zerspanbarkeit		
AZ31A	Mg Al 3 Zn	1,77	F	150	230	10	60	В	С	A	A	A	A	В	A	В		
AZ61A	Mg Al 6 Zn	1,80	F	180	260	8	80	В	С	A	Α	A	В	С	В	В		
AZ80A	Mg Al 8 Zn	1,80	T5	200	280	6	85	В	С	A	А	A	В	С	В	В		
ZK30	Mg Zn 3 Zr	1,80	T5	200	290	7	85	С	D	А	А	А	С	С	С	В		
ZK60	Mg Zn 6 Zr	1,83	T5	220	300	7	90	С	D	A	Α	А	D	С	D	В		

^{*1:} Ein Oberflächenschutz ist nötig, um die Korrosionsresistenz zu verbessern.

A => Sehr gut

B => Gut

C => Mittelmässig

D => Schlecht, zu vermeiden

^{*2:} Glühen ist nötig, um Spannungen nach dem Schweissen abzubauen.